Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 65501

Interpretation of coef for a continuous variable in xtlogit, re

$
0
0
I have two groups of countries (0 and 1), and am trying to explain the difference as due to a variable MTP. This is a continuous variable, that ranges between approx 0-12.

I would like to be able to say: countries at the higher end of MTP (e.g., 90th percentile) are x% more likely to be in group 1 than countries with low MTP (e.g., 10th percentile)

I am using xtlogit, and the coefficient for MTP is 2.66. My understanding is that this means that an increase of 1 in MTP, the odds ratio of being 0 or 1 increases by exp(2.66)=14.3.
If i take into account that MTP regularly differs between approx 1 and 8 (10th vs 90th percentile), than the odds ratio of being 0 or 1 is 14.3 to the power of 7, equals 122,279,108.
That seems extreme, or just silly. I would only expect that if countries were nearly perfectly distributed as 0 for ones with low MTP, and 1 for ones with high MTP, but that is not the case at all (see boxplot at end).

I am using 'xtlogit, re' by the way, because the variable MTP is constant for each country.

The question then is: 1) what is wrong with my explanation, and 2) how do I obtain a result that does accurately indicate the odds ratio of being 0 or 1, depending on the value of MTP?


Code:
. xtlogit windex100 MTP_Wind_Os_GWh_sqkm EconGen03ln  Wind12ln PowAll01ln PowAll03 PowAll05ln EconGen05 Coal03 Hydro03 Nucl03 Gas03 Oi
> l03 BioGeo03 PV04 Pollute04ln Pollute01atln EnerPri06 EnerPri08 EnerPri10 PoliWind01 PoliWind02 PoliWind03 PoliWind04 PoliWind05 Pol
> iWind06 PoliWind07 PoliWind08 PoliWind09, re nolog iterate(250)
note: PoliWind07 != 0 predicts success perfectly
      PoliWind07 dropped and 19 obs not used


Random-effects logistic regression              Number of obs      =      3996
Group variable: ctryidnr                        Number of groups   =       132

Random effects u_i ~ Gaussian                   Obs per group: min =         2
                                                               avg =      30.3
                                                               max =        35

Integration method: mvaghermite                 Integration points =        12

                                                Wald chi2(27)      =    767.46
Log likelihood  = -183.47199                    Prob > chi2        =    0.0000

--------------------------------------------------------------------------------------
           windex100 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
---------------------+----------------------------------------------------------------
                 MTP |   2.665071   .4818044     5.53   0.000     1.720752     3.60939
         EconGen03ln |   8.246404   1.654326     4.98   0.000     5.003985    11.48882
            Wind12ln |   8.126688   .8110303    10.02   0.000     6.537098    9.716279
          PowAll01ln |   11.38055   .9115233    12.49   0.000     9.593997     13.1671
            PowAll03 |   -.159103   .0714346    -2.23   0.026    -.2991123   -.0190937
          PowAll05ln |   5.232509   1.864259     2.81   0.005     1.578629     8.88639
           EconGen05 |    .038857   .0117137     3.32   0.001     .0158986    .0618154
              Coal03 |   .0506792   .0301829     1.68   0.093    -.0084782    .1098365
             Hydro03 |  -.0465293   .0391585    -1.19   0.235    -.1232786      .03022
              Nucl03 |  -.1067515   .0664984    -1.61   0.108     -.237086     .023583
               Gas03 |  -.0171653   .0107564    -1.60   0.111    -.0382474    .0039169
               Oil03 |  -.0306124   .0454107    -0.67   0.500    -.1196158    .0583909
            BioGeo03 |  -.5167287   .4115646    -1.26   0.209     -1.32338    .2899231
                PV04 |   6.220702    2.15526     2.89   0.004      1.99647    10.44493
         Pollute04ln |  -12.32647   2.188002    -5.63   0.000    -16.61488   -8.038064
       Pollute01atln |  -2.133058   1.602303    -1.33   0.183    -5.273514    1.007399
           EnerPri06 |  -.0107482   .0185987    -0.58   0.563     -.047201    .0257046
           EnerPri08 |   .0893871   .0566184     1.58   0.114    -.0215829    .2003571
           EnerPri10 |  -.5275449   .3214577    -1.64   0.101     -1.15759    .1025006
          PoliWind01 |   26.57017   21.69011     1.22   0.221    -15.94167    69.08201
          PoliWind02 |  -3.424483   2.499803    -1.37   0.171    -8.324008    1.475041
          PoliWind03 |   16.37729    3.28862     4.98   0.000      9.93171    22.82286
          PoliWind04 |  -24.31482   8.150193    -2.98   0.003     -40.2889   -8.340731
          PoliWind05 |  -8.727784   13.54992    -0.64   0.519    -35.28514    17.82957
          PoliWind06 |  -1.551728   8.474649    -0.18   0.855    -18.16173    15.05828
          PoliWind07 |          0  (omitted)
          PoliWind08 |   -7.17042   4.932269    -1.45   0.146    -16.83749    2.496649
          PoliWind09 |   7.813706   4.775382     1.64   0.102     -1.54587    17.17328
               _cons |  -388.7335   35.53703   -10.94   0.000    -458.3848   -319.0823
---------------------+----------------------------------------------------------------
            /lnsig2u |   5.677371   .2015317                      5.282376    6.072366
---------------------+----------------------------------------------------------------
             sigma_u |   17.09328   1.722419                      14.02986     20.8256
                 rho |   .9888656   .0022189                      .9835611    .9924716
--------------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) =   626.45 Prob >= chibar2 = 0.000

Array

Viewing all articles
Browse latest Browse all 65501

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>