Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 65044

Interpretation of classification table in stata for a logistic regression and ROC curve

$
0
0
Dear Everyone,

I performed some tests for my logistic regression: lroc, estat class, cutoff(0.15), and estat gof, group (10).


My results are as follows:

1. lroc

Logistic model for phdv

number of observations = 10051
area under ROC curve = 0.6266


2. estat class, cutoff(0.15)
-------- True --------
Classified D ~D Total
625 2615 3240
-699 6112 6811
Total 1324 8727 10051
Classified + if predicted Pr(D) >= .15
True D defined as phdv != 0
Sensitivity Pr( + D) 47.21%
Specificity Pr( -~D) 70.04%
Positive predictive value Pr( D +) 19.29%
Negative predictive value Pr(~D -) 89.74%
False + rate for true ~D Pr( +~D) 29.96%
False - rate for true D Pr( - D) 52.79%
False + rate for classified + Pr(~D +) 80.71%
False - rate for classified - Pr( D -) 10.26%
Correctly classified 67.03%

3. estat gof, group(10)

Logistic model for phdv, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

number of observations = 10051
number of groups = 10
Hosmer-Lemeshow chi2(8) = 4.36
Prob > chi2 = 0.8228



Please advice and help me if i can go ahead with the model. I mean if the model is good or not. I fail to draw conclusion.

Thanking you in advance

S. Rinchen




Viewing all articles
Browse latest Browse all 65044

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>