Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 65064

-glm- vs -sem-: Point estimates are the same, but SEs are not

$
0
0
Hello folks. My apologies if this has been asked before--I did search, but failed to find anything on it.

When I estimate the same model via -glm- and -sem-, I get the same point estimates, but different SEs (see example below). Given that both procedures use MLE, I expected everything (including SEs) to be identical. Was I wrong to expect that? Are there any options with different defaults that I need to tinker with?

Thanks for any insight you can offer.

By the way, I am using v13.1 (for Windows).

Cheers,
Bruce


Code:
. sysuse auto, clear
(1978 Automobile Data)

.
. glm mpg weight foreign        // estimate same model via -glm-

Iteration 0:   log likelihood = -194.18306  

Generalized linear models                          No. of obs      =        74
Optimization     : ML                              Residual df     =        71
                                                   Scale parameter =  11.60805
Deviance         =  824.1717613                    (1/df) Deviance =  11.60805
Pearson          =  824.1717613                    (1/df) Pearson  =  11.60805

Variance function: V(u) = 1                        [Gaussian]
Link function    : g(u) = u                        [Identity]

                                                   AIC             =  5.329272
Log likelihood   = -194.1830644                    BIC             =  518.5831

------------------------------------------------------------------------------
             |                 OIM
         mpg |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      weight |  -.0065879   .0006371   -10.34   0.000    -.0078366   -.0053392
     foreign |  -1.650029   1.075994    -1.53   0.125    -3.758939    .4588806
       _cons |    41.6797   2.165547    19.25   0.000     37.43531     45.9241
------------------------------------------------------------------------------

. sem (mpg <- weight foreign)   // estimate same model via -sem-

Endogenous variables

Observed:  mpg

Exogenous variables

Observed:  weight foreign

Fitting target model:

Iteration 0:   log likelihood =  -822.2459  
Iteration 1:   log likelihood =  -822.2459  

Structural equation model                       Number of obs      =        74
Estimation method  = ml
Log likelihood     =  -822.2459

------------------------------------------------------------------------------
             |                 OIM
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural   |
  mpg <-     |
      weight |  -.0065879   .0006241   -10.56   0.000     -.007811   -.0053647
     foreign |  -1.650029   1.053958    -1.57   0.117    -3.715748    .4156902
       _cons |    41.6797   2.121197    19.65   0.000     37.52223    45.83717
-------------+----------------------------------------------------------------
   var(e.mpg)|   11.13746   1.830987                       8.06955    15.37173
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0)   =      0.00, Prob > chi2 =      .

.
. // The -glm- and -sem- commands both use MLE; and the
. // defaults for -glm- are normal error distribution with
. // identity link function.  So I expected -glm- and -sem-
. // to yield identical results.  The point estimates are
. // the same, but the SEs are not.

Viewing all articles
Browse latest Browse all 65064

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>