Hello folks. My apologies if this has been asked before--I did search, but failed to find anything on it.
When I estimate the same model via -glm- and -sem-, I get the same point estimates, but different SEs (see example below). Given that both procedures use MLE, I expected everything (including SEs) to be identical. Was I wrong to expect that? Are there any options with different defaults that I need to tinker with?
Thanks for any insight you can offer.
By the way, I am using v13.1 (for Windows).
Cheers,
Bruce
When I estimate the same model via -glm- and -sem-, I get the same point estimates, but different SEs (see example below). Given that both procedures use MLE, I expected everything (including SEs) to be identical. Was I wrong to expect that? Are there any options with different defaults that I need to tinker with?
Thanks for any insight you can offer.
By the way, I am using v13.1 (for Windows).
Cheers,
Bruce
Code:
. sysuse auto, clear (1978 Automobile Data) . . glm mpg weight foreign // estimate same model via -glm- Iteration 0: log likelihood = -194.18306 Generalized linear models No. of obs = 74 Optimization : ML Residual df = 71 Scale parameter = 11.60805 Deviance = 824.1717613 (1/df) Deviance = 11.60805 Pearson = 824.1717613 (1/df) Pearson = 11.60805 Variance function: V(u) = 1 [Gaussian] Link function : g(u) = u [Identity] AIC = 5.329272 Log likelihood = -194.1830644 BIC = 518.5831 ------------------------------------------------------------------------------ | OIM mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- weight | -.0065879 .0006371 -10.34 0.000 -.0078366 -.0053392 foreign | -1.650029 1.075994 -1.53 0.125 -3.758939 .4588806 _cons | 41.6797 2.165547 19.25 0.000 37.43531 45.9241 ------------------------------------------------------------------------------ . sem (mpg <- weight foreign) // estimate same model via -sem- Endogenous variables Observed: mpg Exogenous variables Observed: weight foreign Fitting target model: Iteration 0: log likelihood = -822.2459 Iteration 1: log likelihood = -822.2459 Structural equation model Number of obs = 74 Estimation method = ml Log likelihood = -822.2459 ------------------------------------------------------------------------------ | OIM | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Structural | mpg <- | weight | -.0065879 .0006241 -10.56 0.000 -.007811 -.0053647 foreign | -1.650029 1.053958 -1.57 0.117 -3.715748 .4156902 _cons | 41.6797 2.121197 19.65 0.000 37.52223 45.83717 -------------+---------------------------------------------------------------- var(e.mpg)| 11.13746 1.830987 8.06955 15.37173 ------------------------------------------------------------------------------ LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 = . . . // The -glm- and -sem- commands both use MLE; and the . // defaults for -glm- are normal error distribution with . // identity link function. So I expected -glm- and -sem- . // to yield identical results. The point estimates are . // the same, but the SEs are not.