Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 65123

How to interpret results from a two-level mixed effects model?

$
0
0
Hello member,

Can you please help to describe the model and interpret the results below correctly? I found the literature on multilevel model quite confusing as the same model appear called and interpreted differently.

Am right to state that:

1. This is a random slope model where by overall model intercept (_cons) is shifted by magnitude of the standard error of the variance of the variable new-retai? In effect,estimated coefficient for new-retai is fixed but clustered data at a panel identified level (SKUCode) and at new-retai mean that the model intercept is no longer constant.

2. Such model allows to get more efficient estimates than OLS even if variance of new-retai is not constant over time?

Thanks,
Mohmaud

Code:
xtmixed price_ad d##ib1.cool ib1.branv ib1.new_packz ib1.new_retai ib1.new_eatq    ib1.speci    s1    s2    s3    if    price_ad>0SKUCode:retai,    nolog    mle
>  cov(unstructured) variance
note: 3.speci omitted because of collinearity

Mixed-effects ML regression                     Number of obs     =        881
Group variable: SKUCode                         Number of groups  =         19

Obs per group:
min =         28
avg =       46.4
max =         60

Wald chi2(22)     =     744.82
Log likelihood = -1408.9143                     Prob > chi2       =     0.0000


price_ad       Coef.   Std. Err.      z    P>z     [95% Conf. Interval]

1.d   -.0676438   .1142086    -0.59   0.554    -.2914885    .1562008

cool 
English     .8446842   .7522606     1.12   0.261    -.6297195    2.319088
Irish    -.8442959   .6345829    -1.33   0.183    -2.088055    .3994636
New Zealand       3.0832   .6348334     4.86   0.000      1.83895    4.327451
Undeclared     -3.05322     .79554    -3.84   0.000     -4.61245    -1.49399

d#cool 
1#English     1.414085   .4242636     3.33   0.001     .5825437    2.245627
1#Irish     1.490209   .2787894     5.35   0.000      .943792    2.036626
1#New Zealand     .4875265   .3287033     1.48   0.138    -.1567202    1.131773
1#Undeclared     .3319101   .2004654     1.66   0.098    -.0609949    .7248152

branv 
Mid range    -2.335512   .8236805    -2.84   0.005    -3.949896   -.7211273
Value     -2.34774   .8840788    -2.66   0.008    -4.080503   -.6149777

new_packz 
2      1.62276   .7776197     2.09   0.037     .0986534    3.146866
3     2.540382   .2145492    11.84   0.000     2.119873    2.960891

new_retai 
2    -2.821306   .9139832    -3.09   0.002    -4.612681   -1.029932
3    -.8948616   .7698844    -1.16   0.245    -2.403807    .6140842
4    -1.321566   1.100434    -1.20   0.230    -3.478376    .8352452

2.new_eatq      .55709   .5786807     0.96   0.336    -.5771033    1.691283

speci 
Chicken     2.712263   1.200454     2.26   0.024     .3594168    5.065109
Lamb            0  (omitted)
Pork     .7339984   .5613633     1.31   0.191    -.3662534     1.83425

s1   -.0226442   .1140905    -0.20   0.843    -.2462574    .2009691
s2    .1004148   .1117495     0.90   0.369    -.1186102    .3194398
s3   -.0045074   .1111552    -0.04   0.968    -.2223676    .2133527
_cons    7.042653   1.402746     5.02   0.000     4.293321    9.791986



Random-effects Parameters     Estimate   Std. Err.     [95% Conf. Interval]

SKUCode: Unstructured        
var(retai)    .0764931   .0392668      .0279684    .2092072
var(_cons)    1.899935   .9071493      .7452827    4.843466
cov(retai,_cons)   -.3812243   .1881468     -.7499853   -.0124633

var(Residual)    1.386305   .0665228      1.261866    1.523016

LR test vs. linear model: chi2(3) = 78.02                 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Viewing all articles
Browse latest Browse all 65123

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>