Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 65064

Least Square Dummy Variable (LSDV) in Stata

$
0
0
I am working on a panel of 59 banks picked from 12 countries. My time period spans from 2009 till 2015. My objective is to figure out which determinants impact profit of banks. My dependent variable is therefore profit which takes the abbreviation 'nim' in my commands which I have pasted below. All other variables are explanatory variables. Country names represent country dummies.
I now need to perform 'Least Square Dummy Variables (LSDV) ' on this panel data. I have learnt from various textbooks that 'LSDV' is the other name for 'fixed effect estimation'. I need to know which of the following three commands performs LSDV in my panel data.

Command # 1:
Code:
. xtreg nim nir cr lta otoi nlta ooiti eata car bm inf pcgg cpi Nigeria SriLanka Bangladesh India Kenya M
> alaysia Egypt Philippines China Turkey Thailand,fe
note: Nigeria omitted because of collinearity
note: SriLanka omitted because of collinearity
note: Bangladesh omitted because of collinearity
note: India omitted because of collinearity
note: Malaysia omitted because of collinearity
note: Egypt omitted because of collinearity
note: Philippines omitted because of collinearity
note: China omitted because of collinearity
note: Turkey omitted because of collinearity

Fixed-effects (within) regression               Number of obs      =       413
Group variable: id                              Number of groups   =        59

R-sq:  within  = 0.3481                         Obs per group: min =         7
       between = 0.1971                                        avg =       7.0
       overall = 0.2147                                        max =         7

                                                F(14,340)          =     12.97
corr(u_i, Xb)  = -0.0951                        Prob > F           =    0.0000

------------------------------------------------------------------------------
         nim |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         nir |   .0163953    .011685     1.40   0.161    -.0065888    .0393794
          cr |   .0016437   .0009959     1.65   0.100    -.0003151    .0036026
         lta |  -1.106441   .3945453    -2.80   0.005    -1.882498   -.3303838
        otoi |  -.0455696   .0052323    -8.71   0.000    -.0558613   -.0352779
        nlta |  -.0029255   .0072428    -0.40   0.687    -.0171718    .0113208
       ooiti |  -.0466676   .0053673    -8.69   0.000    -.0572249   -.0361104
        eata |  -.0176386   .0077747    -2.27   0.024    -.0329313    -.002346
         car |   .0168051   .0165491     1.02   0.311    -.0157464    .0493566
          bm |   .0007851   .0075308     0.10   0.917    -.0140277    .0155978
         inf |   .0199149   .0167545     1.19   0.235    -.0130407    .0528705
        pcgg |  -.0425883   .0169323    -2.52   0.012    -.0758936   -.0092829
         cpi |  -.0125125   .0130406    -0.96   0.338     -.038163    .0131379
     Nigeria |          0  (omitted)
    SriLanka |          0  (omitted)
  Bangladesh |          0  (omitted)
       India |          0  (omitted)
       Kenya |   .9214237   .7084233     1.30   0.194    -.4720206    2.314868
    Malaysia |          0  (omitted)
       Egypt |          0  (omitted)
 Philippines |          0  (omitted)
       China |          0  (omitted)
      Turkey |          0  (omitted)
    Thailand |  -.8381735   .6967971    -1.20   0.230     -2.20875    .5324025
       _cons |   14.05015   1.784493     7.87   0.000     10.54011    17.56019
-------------+----------------------------------------------------------------
     sigma_u |  1.7229017
     sigma_e |  .63462076
         rho |  .88053173   (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0:     F(58, 340) =    23.04             Prob > F = 0.0000

.
Command # 2:
Code:
. xtreg nim nir cr lta otoi nlta ooiti eata car bm inf pcgg cpi Nigeria SriLanka Bangladesh India Kenya M
> alaysia Egypt Philippines China Turkey Thailand

Random-effects GLS regression                   Number of obs      =       413
Group variable: id                              Number of groups   =        59

R-sq:  within  = 0.3348                         Obs per group: min =         7
       between = 0.7206                                        avg =       7.0
       overall = 0.6728                                        max =         7

                                                Wald chi2(23)      =    334.94
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
         nim |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         nir |   .0187304   .0115449     1.62   0.105    -.0038972     .041358
          cr |   .0012113   .0009953     1.22   0.224    -.0007396    .0031621
         lta |  -.7070863   .2783553    -2.54   0.011    -1.252653   -.1615198
        otoi |  -.0395627   .0050475    -7.84   0.000    -.0494556   -.0296698
        nlta |    .002645   .0070117     0.38   0.706    -.0110978    .0163877
       ooiti |  -.0439643   .0053437    -8.23   0.000    -.0544377   -.0334908
        eata |  -.0217432   .0078519    -2.77   0.006    -.0371326   -.0063538
         car |   .0230583   .0161679     1.43   0.154    -.0086302    .0547468
          bm |   .0044242   .0077166     0.57   0.566    -.0107001    .0195485
         inf |   .0221639   .0171058     1.30   0.195    -.0113628    .0556907
        pcgg |  -.0461017   .0175316    -2.63   0.009     -.080463   -.0117403
         cpi |   -.021785   .0121113    -1.80   0.072    -.0455228    .0019527
     Nigeria |   3.033168   .5995214     5.06   0.000     1.858128    4.208208
    SriLanka |   .2917484   .5777481     0.50   0.614    -.8406169    1.424114
  Bangladesh |   .2904912   .5843622     0.50   0.619    -.8548377     1.43582
       India |  -.5742879   .5308723    -1.08   0.279    -1.614779    .4662027
       Kenya |   2.126572   .5044502     4.22   0.000     1.137868    3.115277
    Malaysia |  -2.424813   .6493439    -3.73   0.000    -3.697504   -1.152122
       Egypt |  -1.831614   .6096875    -3.00   0.003     -3.02658   -.6366488
 Philippines |  -.6361527    .466915    -1.36   0.173    -1.551289    .2789839
       China |   -1.47036   .8933924    -1.65   0.100    -3.221377    .2806571
      Turkey |   1.160753   .6421596     1.81   0.071    -.0978566    2.419363
    Thailand |  -.3987376   .6466344    -0.62   0.537    -1.666118    .8686425
       _cons |   12.48027   1.468979     8.50   0.000     9.601125    15.35942
-------------+----------------------------------------------------------------
     sigma_u |  .87351738
     sigma_e |  .63462076
         rho |  .65452757   (fraction of variance due to u_i)
------------------------------------------------------------------------------


Command # 3:

Code:
 reg nim nir cr lta otoi nlta ooiti eata car bm inf pcgg cpi Nigeria SriLanka Bangladesh India Kenya Mal
> aysia Egypt Philippines China Turkey Thailand

      Source |       SS       df       MS              Number of obs =     413
-------------+------------------------------           F( 23,   389) =   43.16
       Model |  1217.92882    23  52.9534271           Prob > F      =  0.0000
    Residual |  477.245929   389  1.22685329           R-squared     =  0.7185
-------------+------------------------------           Adj R-squared =  0.7018
       Total |  1695.17475   412  4.11450183           Root MSE      =  1.1076

------------------------------------------------------------------------------
         nim |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         nir |   .0244971   .0138858     1.76   0.078    -.0028035    .0517976
          cr |  -.0002709   .0012601    -0.22   0.830    -.0027484    .0022066
         lta |   .0197848   .1800724     0.11   0.913    -.3342522    .3738218
        otoi |  -.0175484   .0053328    -3.29   0.001     -.028033   -.0070637
        nlta |   .0225154   .0078639     2.86   0.004     .0070543    .0379764
       ooiti |  -.0438234   .0069521    -6.30   0.000    -.0574918   -.0301551
        eata |  -.0503858   .0111521    -4.52   0.000    -.0723117   -.0284598
         car |   .0722298   .0180023     4.01   0.000     .0368357    .1076239
          bm |   .0161238   .0127652     1.26   0.207    -.0089736    .0412211
         inf |   .0175698   .0278604     0.63   0.529    -.0372059    .0723456
        pcgg |  -.0524609   .0293188    -1.79   0.074     -.110104    .0051822
         cpi |  -.0428361   .0180001    -2.38   0.018    -.0782257   -.0074465
     Nigeria |    2.65039   .3263086     8.12   0.000     2.008841    3.291939
    SriLanka |   .8536365   .3892656     2.19   0.029     .0883088    1.618964
  Bangladesh |   .8205079   .3720648     2.21   0.028     .0889982    1.552018
       India |  -.3762995   .3591384    -1.05   0.295    -1.082395    .3297957
       Kenya |   2.897395   .3746782     7.73   0.000     2.160747    3.634043
    Malaysia |  -2.140142   .4942142    -4.33   0.000    -3.111807   -1.168477
       Egypt |  -.9467589    .311581    -3.04   0.003    -1.559352   -.3341653
 Philippines |  -.3202755   .2946155    -1.09   0.278    -.8995135    .2589625
       China |  -1.556073   .5554704    -2.80   0.005    -2.648172   -.4639728
      Turkey |   1.475286   .4628376     3.19   0.002     .5653102    2.385263
    Thailand |  -1.002632   .4558766    -2.20   0.028    -1.898923   -.1063418
       _cons |    9.64989   1.527788     6.32   0.000     6.646134    12.65365
------------------------------------------------------------------------------

.
Problem with the first command is that iy is omitting my country dummies. I don't want this to happen. I need to know their sign and significance.
Confusion with the second command is that it uses xtreg plus it doesn't use -fe- option.
I read LSDV is simply OLS applied on model that includes country dummies. So, is -xtreg- the right command or is the 3rd command that uses -reg- correct?'

Please reply! Which among these three commands actually perform LSDV in my model?

Viewing all articles
Browse latest Browse all 65064

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>