Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 65521

Interpreting random effects: can statistical significance of variance components be determined?

$
0
0
I use Stata 14.1 on Windows 10

Using this code:
Code:
mixed tolind c.age##c.age Inspired Fables female Liberal Moderate white ceduc marry kids south urban rural suburban crelcom mainline blackprot catholic nofaith tolindsd [fweight=wtssall]|| _all:R.cohort5 || year:
I get these results:
HTML Code:
-------------------------------------------------------------
                |     No. of       Observations per Group
 Group Variable |     Groups    Minimum    Average    Maximum
----------------+--------------------------------------------
           _all |          1     14,604   14,604.0     14,604
           year |         18        348      810.8      1,733
-------------------------------------------------------------

                                                Wald chi2(21)     =    8042.40
Log likelihood =  -39253.37                     Prob > chi2       =     0.0000

------------------------------------------------------------------------------
      tolind |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |  -.0024984   .0133355    -0.19   0.851    -.0286355    .0236387
             |
 c.age#c.age |  -.0003943   .0001274    -3.10   0.002    -.0006439   -.0001446
             |
    Inspired |   1.680803    .072354    23.23   0.000     1.538992    1.822614
      Fables |   1.882974   .1039909    18.11   0.000     1.679155    2.086792
      female |   .1422362   .0607907     2.34   0.019     .0230886    .2613838
     Liberal |   .2627643   .0785938     3.34   0.001     .1087233    .4168053
    Moderate |   .1032633   .0708411     1.46   0.145    -.0355828    .2421094
       white |   .6327955   .0920592     6.87   0.000     .4523628    .8132283
       ceduc |   .1892372   .0084649    22.36   0.000     .1726463    .2058281
       marry |  -.0779974   .0683676    -1.14   0.254    -.2119955    .0560006
        kids |  -.2239905   .0805381    -2.78   0.005    -.3818422   -.0661387
       south |  -.5834785   .0644605    -9.05   0.000    -.7098187   -.4571383
       urban |   .0869833   .0832515     1.04   0.296    -.0761867    .2501532
       rural |  -.7469693   .1015166    -7.36   0.000    -.9459382   -.5480003
    suburban |   .3433786   .0730651     4.70   0.000     .2001736    .4865836
     crelcom |  -.0815977   .0096197    -8.48   0.000     -.100452   -.0627435
    mainline |   .4905731   .0900192     5.45   0.000     .3141387    .6670074
   blackprot |   .0190671   .1368865     0.14   0.889    -.2492256    .2873598
    catholic |   .2306323   .0786859     2.93   0.003     .0764108    .3848538
     nofaith |   .4159865   .1095781     3.80   0.000     .2012174    .6307556
    tolindsd |  -8.500621   .1499065   -56.71   0.000    -8.794432    -8.20681
       _cons |   11.76895   .3746199    31.42   0.000     11.03471    12.50319
------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]
-----------------------------+------------------------------------------------
_all: Identity               |
              var(R.cohort5) |   .1133522   .0581664      .0414609    .3099001
-----------------------------+------------------------------------------------
year: Identity               |
                  var(_cons) |   .3264224   .1205952      .1582368    .6733679
-----------------------------+------------------------------------------------
               var(Residual) |   12.57375   .1473513      12.28824    12.86589
------------------------------------------------------------------------------
LR test vs. linear model: chi2(2) = 0.00                  Prob > chi2 = 1.0000

Note: LR test is conservative and provided only for reference.
My question has to do with the random-effects parameters, specifically, can one say that the variance components (.113 and/or .326) are statistically significant? In some MLM studies, I see these variance components listed as significant, in others, I see no mention of it. I thought that the LR test was a test comparing two models using their log likelihoods - but it is not clear to me that this says anything about whether or not the variance components can be listed as statistically significant or not.

Help is appreciated.
Thanks,
Marie

Viewing all articles
Browse latest Browse all 65521

Trending Articles