I use Stata 14.1 on Windows 10
Using this code:
I get these results:
My question has to do with the random-effects parameters, specifically, can one say that the variance components (.113 and/or .326) are statistically significant? In some MLM studies, I see these variance components listed as significant, in others, I see no mention of it. I thought that the LR test was a test comparing two models using their log likelihoods - but it is not clear to me that this says anything about whether or not the variance components can be listed as statistically significant or not.
Help is appreciated.
Thanks,
Marie
Using this code:
Code:
mixed tolind c.age##c.age Inspired Fables female Liberal Moderate white ceduc marry kids south urban rural suburban crelcom mainline blackprot catholic nofaith tolindsd [fweight=wtssall]|| _all:R.cohort5 || year:
HTML Code:
------------------------------------------------------------- | No. of Observations per Group Group Variable | Groups Minimum Average Maximum ----------------+-------------------------------------------- _all | 1 14,604 14,604.0 14,604 year | 18 348 810.8 1,733 ------------------------------------------------------------- Wald chi2(21) = 8042.40 Log likelihood = -39253.37 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ tolind | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0024984 .0133355 -0.19 0.851 -.0286355 .0236387 | c.age#c.age | -.0003943 .0001274 -3.10 0.002 -.0006439 -.0001446 | Inspired | 1.680803 .072354 23.23 0.000 1.538992 1.822614 Fables | 1.882974 .1039909 18.11 0.000 1.679155 2.086792 female | .1422362 .0607907 2.34 0.019 .0230886 .2613838 Liberal | .2627643 .0785938 3.34 0.001 .1087233 .4168053 Moderate | .1032633 .0708411 1.46 0.145 -.0355828 .2421094 white | .6327955 .0920592 6.87 0.000 .4523628 .8132283 ceduc | .1892372 .0084649 22.36 0.000 .1726463 .2058281 marry | -.0779974 .0683676 -1.14 0.254 -.2119955 .0560006 kids | -.2239905 .0805381 -2.78 0.005 -.3818422 -.0661387 south | -.5834785 .0644605 -9.05 0.000 -.7098187 -.4571383 urban | .0869833 .0832515 1.04 0.296 -.0761867 .2501532 rural | -.7469693 .1015166 -7.36 0.000 -.9459382 -.5480003 suburban | .3433786 .0730651 4.70 0.000 .2001736 .4865836 crelcom | -.0815977 .0096197 -8.48 0.000 -.100452 -.0627435 mainline | .4905731 .0900192 5.45 0.000 .3141387 .6670074 blackprot | .0190671 .1368865 0.14 0.889 -.2492256 .2873598 catholic | .2306323 .0786859 2.93 0.003 .0764108 .3848538 nofaith | .4159865 .1095781 3.80 0.000 .2012174 .6307556 tolindsd | -8.500621 .1499065 -56.71 0.000 -8.794432 -8.20681 _cons | 11.76895 .3746199 31.42 0.000 11.03471 12.50319 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ _all: Identity | var(R.cohort5) | .1133522 .0581664 .0414609 .3099001 -----------------------------+------------------------------------------------ year: Identity | var(_cons) | .3264224 .1205952 .1582368 .6733679 -----------------------------+------------------------------------------------ var(Residual) | 12.57375 .1473513 12.28824 12.86589 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(2) = 0.00 Prob > chi2 = 1.0000 Note: LR test is conservative and provided only for reference.
Help is appreciated.
Thanks,
Marie