Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 65593

ologit and brant test

$
0
0
Hello everyone,

I have conducted a brant test after an ordered logistic regression in order to test for the parallel regression assumption. My main independent variable is foreign_bakgrnd which does not seem to violate the assumption. However, I'm worried about the significant value of all the variables, i.e. "All" with a p<0.05. Should I consider doing mlogit instead or is ologit better in this case? I also conducted other tests which seem to point to ordered logistic regression as the best fit. However, I'm not 100% sure.

Some background information: The dependent variable ranges from 1 to 5 "very good, good, neither good nor bad, bad, very bad," to a proposal regarding immigration. Foreign_bakgrnd is the percentage of immigrants in each municipality.





Ologit

Code:
ologit refugee  gender age educ income student unemp foreign_bakgrnd tax total_unemp welfare  if raised_swe==1 & mom==1 & dad==1 & f
> 80a==1 & citizen==1, cluster (kommun)

Iteration 0:   log pseudolikelihood = -3262.2904  
Iteration 1:   log pseudolikelihood = -3140.9864  
Iteration 2:   log pseudolikelihood = -3140.2161  
Iteration 3:   log pseudolikelihood = -3140.2157  
Iteration 4:   log pseudolikelihood = -3140.2157  

Ordered logistic regression                       Number of obs   =       2035
                                                  Wald chi2(10)   =     313.20
                                                  Prob > chi2     =     0.0000
Log pseudolikelihood = -3140.2157                 Pseudo R2       =     0.0374

                                   (Std. Err. adjusted for 50 clusters in kommun)
---------------------------------------------------------------------------------
                |               Robust
        refugee |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
----------------+----------------------------------------------------------------
         gender |   .3089709    .070089     4.41   0.000      .171599    .4463427
            age |   .0055836   .0043592     1.28   0.200    -.0029603    .0141275
           educ |    .471975   .0498627     9.47   0.000     .3742459    .5697041
         income |   .0187043   .0176838     1.06   0.290    -.0159553    .0533639
        student |   .7294596    .185481     3.93   0.000     .3659235    1.092996
          unemp |   .2874827   .2435057     1.18   0.238    -.1897796     .764745
foreign_bakgrnd |   .0259353   .0095523     2.72   0.007     .0072131    .0446576
            tax |  -.0011078   .0067755    -0.16   0.870    -.0143875    .0121719
    total_unemp |  -.0617319   .0238923    -2.58   0.010      -.10856   -.0149038
        welfare |   .0026904   .0484414     0.06   0.956    -.0922529    .0976337
----------------+----------------------------------------------------------------
          /cut1 |   .6259649   .7343175                      -.813271    2.065201
          /cut2 |   1.721342    .724796                      .3007678    3.141916
          /cut3 |   2.781114   .7424679                      1.325904    4.236325
          /cut4 |    3.80011   .7355121                      2.358533    5.241687

Mlogit
Code:
  mlogit refugee  gender age educ income student unemp foreign_bakgrnd tax total_unemp welfare  if raised_swe==1 & mom==1 & dad==1 & f
> 80a==1 & citizen==1, cluster (kommun)

Iteration 0:   log pseudolikelihood = -3262.2904  
Iteration 1:   log pseudolikelihood = -3118.6774  
Iteration 2:   log pseudolikelihood = -3114.8747  
Iteration 3:   log pseudolikelihood = -3114.8613  
Iteration 4:   log pseudolikelihood = -3114.8613  

Multinomial logistic regression                   Number of obs   =       2035
                                                  Wald chi2(40)   =    1788.08
                                                  Prob > chi2     =     0.0000
Log pseudolikelihood = -3114.8613                 Pseudo R2       =     0.0452

                                        (Std. Err. adjusted for 50 clusters in kommun)
--------------------------------------------------------------------------------------
                     |               Robust
             refugee |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
---------------------+----------------------------------------------------------------
_Very_Good           |
              gender |   -.394604   .1127504    -3.50   0.000    -.6155907   -.1736173
                 age |   -.010347   .0045848    -2.26   0.024     -.019333    -.001361
                educ |  -.3645869   .0721144    -5.06   0.000    -.5059286   -.2232452
              income |  -.0522729   .0287455    -1.82   0.069     -.108613    .0040672
             student |  -.4549115   .3531302    -1.29   0.198    -1.147034    .2372111
               unemp |   .0304258   .3571199     0.09   0.932    -.6695163    .7303679
     foreign_bakgrnd |   .0016004   .0099909     0.16   0.873    -.0179815    .0211823
                 tax |   .0018852   .0105668     0.18   0.858    -.0188254    .0225957
         total_unemp |   .0154779   .0351648     0.44   0.660    -.0534439    .0843997
             welfare |   .0490317   .0599628     0.82   0.414    -.0684932    .1665565
               _cons |   1.632298   1.059698     1.54   0.123    -.4446714    3.709268
---------------------+----------------------------------------------------------------
Fairly_Good          |
              gender |  -.0450976    .121754    -0.37   0.711    -.2837311    .1935359
                 age |  -.0067947   .0046264    -1.47   0.142    -.0158623    .0022729
                educ |  -.2249964   .0519674    -4.33   0.000    -.3268507   -.1231422
              income |  -.0199047   .0257654    -0.77   0.440     -.070404    .0305945
             student |  -.2329129   .3298539    -0.71   0.480    -.8794146    .4135888
               unemp |  -.4127772   .4627189    -0.89   0.372     -1.31969    .4941352
     foreign_bakgrnd |  -.0044638   .0106793    -0.42   0.676    -.0253949    .0164672
                 tax |   .0096151   .0088208     1.09   0.276    -.0076734    .0269036
         total_unemp |    .006274   .0330595     0.19   0.849    -.0585215    .0710695
             welfare |   .0407527   .0541683     0.75   0.452    -.0654151    .1469206
               _cons |  -.0608351   .9518732    -0.06   0.949    -1.926472    1.804802
---------------------+----------------------------------------------------------------
Neither_good_nor_bad |  (base outcome)
---------------------+----------------------------------------------------------------
Fairly_bad           |
              gender |  -.0628752   .1013472    -0.62   0.535    -.2615122    .1357617
                 age |   .0040965   .0060997     0.67   0.502    -.0078586    .0160516
                educ |   .2815299    .084509     3.33   0.001     .1158953    .4471646
              income |   .0234315   .0260612     0.90   0.369    -.0276474    .0745105
             student |   .5616208   .2876051     1.95   0.051     -.002075    1.125316
               unemp |   .0937818   .3774915     0.25   0.804     -.646088    .8336516
     foreign_bakgrnd |   .0112605   .0156116     0.72   0.471    -.0193376    .0418586
                 tax |   .0125842   .0084345     1.49   0.136    -.0039471    .0291155
         total_unemp |  -.0368523   .0329919    -1.12   0.264    -.1015153    .0278107
             welfare |   .0899803   .0785352     1.15   0.252    -.0639458    .2439064
               _cons |  -2.966431   .9481258    -3.13   0.002    -4.824723   -1.108139
---------------------+----------------------------------------------------------------
Very_bad             |
              gender |   .2793758   .1481659     1.89   0.059     -.011024    .5697756
                 age |  -.0066449   .0054863    -1.21   0.226     -.017398    .0041081
                educ |   .4074613   .0708812     5.75   0.000     .2685368    .5463859
              income |  -.0283097    .033077    -0.86   0.392    -.0931394    .0365201
             student |   .5167056   .3865466     1.34   0.181    -.2409118    1.274323
               unemp |   .3544362   .4450767     0.80   0.426    -.5178981    1.226771
     foreign_bakgrnd |   .0511379   .0121621     4.20   0.000     .0273007    .0749752
                 tax |  -.0007457   .0101354    -0.07   0.941    -.0206107    .0191194
         total_unemp |  -.1032037   .0395097    -2.61   0.009    -.1806413   -.0257661
             welfare |   .0197273   .0590026     0.33   0.738    -.0959156    .1353702
               _cons |  -1.737012   1.161006    -1.50   0.135    -4.012543     .538519
--------------------------------------------------------------------------------------

Code:
 brant

Brant test of parallel regression assumption

                  |       chi2     p>chi2      df
 -----------------+------------------------------
              All |      50.52      0.011      30
 -----------------+------------------------------
           gender |       4.86      0.182       3
              age |       8.33      0.040       3
             educ |       2.06      0.561       3
           income |       5.84      0.119       3
          student |       1.57      0.666       3
            unemp |       2.25      0.522       3
  foreign_bakgrnd |       5.61      0.132       3
              tax |       1.82      0.611       3
      total_unemp |       1.29      0.732       3
          welfare |       1.13      0.769       3

A significant test statistic provides evidence that the parallel
regression assumption has been violated.
I have also used the oparallel command:
Code:
oparallel, ic

Tests of the parallel regression assumption

                 |   Chi2     df  P>Chi2
-----------------+----------------------
     Wolfe Gould |  44.44     30   0.043
           Brant |  50.52     30   0.011
           score |  47.37     30   0.023
likelihood ratio |  45.59     30   0.034
            Wald |  48.76     30   0.017



Information criteria

      |     ologit     gologit  difference
------+------------------------------------
  AIC |    6308.43     6322.84      -14.41
  BIC |    6387.09     6570.05     -182.96
I also compared the saved model (ologit) to the current model (mlogit):


Code:
. fitstat, dif force

                         |     Current        Saved   Difference
-------------------------+---------------------------------------
Log-likelihood           |                                      
                   Model |   -3114.861    -3140.216       25.354
          Intercept-only |   -3262.290    -3262.290        0.000
-------------------------+---------------------------------------
Chi-square               |                                      
    D (df=1991/2021/-30) |    6229.723     6280.431      -50.709
      Wald (df=40/10/30) |    1788.084      313.196     1474.888
                 p-value |       0.000        0.000        0.010
-------------------------+---------------------------------------
R2                       |                                      
                McFadden |       0.045        0.037        0.008
     McFadden (adjusted) |       0.032        0.033       -0.001
            Cox-Snell/ML |       0.135        0.113        0.022
  Cragg-Uhler/Nagelkerke |       0.141        0.118        0.023
                   Count |       0.309        0.290        0.019
        Count (adjusted) |       0.096        0.071        0.025
-------------------------+---------------------------------------
IC                       |                                      
                     AIC |    6317.723     6308.431        9.291
        AIC divided by N |       3.105        3.100        0.005
       BIC (df=44/14/30) |    6564.926     6387.087      177.839

Note: Likelihood-ratio test assumes saved model nested in current model.

Difference of  177.839 in BIC provides very strong support for saved model.

Viewing all articles
Browse latest Browse all 65593

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>