Quantcast
Channel: Statalist
Viewing all articles
Browse latest Browse all 65037

Robust SEs with XTPROBIT - cannot calculate - bug(?)

$
0
0
There seems to be a bug in using time series variables with xtprobit/xtlogit and robust SEs. It has been reported and discussed before here:

http://www.statalist.org/forums/foru...bit-or-xtlogit
http://www.statalist.org/forums/foru...atory-variable
http://www.statalist.org/forums/foru...s-with-xtlogit

It was reported fixed in the first thread, but apparently it's not. I have the latest stata 14 SE (march 30 2016). Here's an output sample to show the issue:

Code:
xtprobit f.Y x1 x2 x3 x4 x5 x6

Random-effects probit regression                Number of obs     =    898,717
Group variable: i                               Number of groups  =    152,358

Random effects u_i ~ Gaussian                   Obs per group:
                                                              min =          1
                                                              avg =        5.9
                                                              max =          6

Integration method: mvaghermite                 Integration pts.  =         12

                                                Wald chi2(6)      =   23273.05
Log likelihood  = -549726.75                    Prob > chi2       =     0.0000

-----------------------------------------------------------------------------------
              F.Y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
               x1 |   4.20e-07   5.66e-09    74.16   0.000     4.09e-07    4.31e-07
               x2 |   .0144303   .0001676    86.08   0.000     .0141017    .0147588
               x3 |   .0711422   .0012444    57.17   0.000     .0687032    .0735812
               x4 |  -.1926475   .0061751   -31.20   0.000    -.2047504   -.1805445
               x5 |  -.3055726   .0232097   -13.17   0.000    -.3510627   -.2600824
               x6 |   .0802345   .0062972    12.74   0.000     .0678922    .0925768
            _cons |  -1.352513   .0094188  -143.60   0.000    -1.370974   -1.334052
------------------+----------------------------------------------------------------
         /lnsig2u |  -.6555548   .0072311                     -.6697276   -.6413821
------------------+----------------------------------------------------------------
          sigma_u |   .7205234   .0026051                      .7154355    .7256474
              rho |   .3417389   .0016267                      .3385578    .3449342
-----------------------------------------------------------------------------------
LR test of rho=0: chibar2(01) = 7.2e+04                Prob >= chibar2 = 0.000

. xtprobit f.Y x1 c.x2##c.x2 x3 x4 x5 x6, vce(robust)

Fitting comparison model:
 
Calculating robust standard errors:
calculation of robust standard errors failed
r(198);

. gen f_Y2 = f.Y

. xtprobit f_Y2 x1 c.x2##c.x2 x3 x4 x5 x6, vce(robust)

Calculating robust standard errors:

Random-effects probit regression                Number of obs     =    898,717
Group variable: i                               Number of groups  =    152,358

Random effects u_i ~ Gaussian                   Obs per group:
                                                              min =          1
                                                              avg =        5.9
                                                              max =          6

Integration method: mvaghermite                 Integration pts.  =         12

                                                Wald chi2(7)      =   26456.46
Log pseudolikelihood  = -548620.13              Prob > chi2       =     0.0000

                                     (Std. Err. adjusted for 152,358 clusters in i)
-----------------------------------------------------------------------------------
                  |               Robust
         f_Y2     |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
               x1 |   3.65e-07   8.70e-09    41.90   0.000     3.48e-07    3.82e-07
               x2 |   .0601118    .001042    57.69   0.000     .0580695     .062154
                  |
        c.x2#c.x2 |  -.0004426   .0000103   -42.99   0.000    -.0004628   -.0004224
                  |
               x3 |   .0513391   .0014949    34.34   0.000     .0484092     .054269
               x4 |  -.1632547   .0069597   -23.46   0.000    -.1768954   -.1496139
               x5 |   -.328031   .0195098   -16.81   0.000    -.3662695   -.2897925
               x6 |   .0809134   .0061836    13.09   0.000     .0687937    .0930331
            _cons |  -2.369385   .0233229  -101.59   0.000    -2.415097   -2.323673
------------------+----------------------------------------------------------------
         /lnsig2u |  -.6275059   .0070927                     -.6414073   -.6136045
------------------+----------------------------------------------------------------
          sigma_u |   .7306995   .0025913                      .7256383    .7357961
              rho |   .3480763   .0016095                      .3449285    .3512374
-----------------------------------------------------------------------------------

As you can see, i'm fitting a model with a lead on Y as the dependent variable.
The model with the regular vce estimates without an issue. trying robust SEs results in:
Calculating robust standard errors:
calculation of robust standard errors failed

r(198);

Yet generating the variable "by hand" as f_Y2 and requiesting robust SEs estimates without an issue. you can see that the number of observations and panel units is the same for all three regression commands, so this is most probably indeed a bug.


Viewing all articles
Browse latest Browse all 65037

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>