Hello everyone,
I am trying to run a regression with clustered standard errors 2D.
So I use the following routine:
xi: cluster2 Y X1 C_X2 C_X3 X4 X5 C_dummy1 interactionX2_dummy1 C_dummy2 interactionX3_dummy2 lnTA if year>2011, fcluster(municipal _id) tcluster(year)
I am using an unbalanced panel data (325 firms for 4 years). So the clusters are unbalanced too.
************************************************** ************************************************** ************
Linear regression with 2D clustered SEs Number of obs = 502
F( 10, 486) = .
Prob > F = .
Number of clusters (firms) = 227 R-squared = 0.4533
Number of clusters (year) = 4 Root MSE = 0.0000
----------------------------------------------------------------------------------------
Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
X1 | -1.82e-08 4.78e-09 -3.81 0.000 -2.76e-08 -8.85e-09
C_X2 | 1.41e-08 9.38e-09 1.50 0.133 -4.32e-09 3.25e-08
C_X3 | -5.84e-10 2.78e-10 -2.10 0.036 -1.13e-09 -3.80e-11
X4 | -.1133196 .1284042 -0.88 0.378 -.3656155 .1389762
X5 | -1.03e-09 2.00e-09 -0.51 0.607 -4.97e-09 2.91e-09
C_dummy1| 3.66e-10 3.58e-10 1.02 0.308 -3.38e-10 1.07e-09
C_dummy2 | -2.40e-09 2.88e-09 -0.83 0.405 -8.07e-09 3.26e-09
interactionX2_dummy1 | 1.17e-09 6.05e-09 0.19 0.047 -1.07e-08 1.31e-08
interactionX3_dummy2 | -1.46e-09 2.74e-10 -5.35 0.000 -2.00e-09 -9.26e-10
lnTA | -9.67e-10 2.75e-10 -3.52 0.000 -1.51e-09 -4.28e-10
_cons | 1.62e-08 4.66e-09 3.47 0.001 7.02e-09 2.53e-08
----------------------------------------------------------------------------------------
SE clustered by firms and year
************************************************** ************************************************** ************
I've noticed that some users have the same problem as me (
http://www.statalist.org/forums/foru...terpret-prob-f).
So, I 've tried to exclude the unbalanced clusters from my regression but the problem still remains.
Can you suggest me how to deal with this problem?
Thank you in advance
Ioanna