Refining starting values:
Iteration 0: log likelihood = -28.696589 (not concave)
Iteration 1: log likelihood = -26.381488 (not concave)
Iteration 2: log likelihood = -24.186128
Iteration 3: log likelihood = -23.026692
Performing gradient-based optimization:
Iteration 0: log likelihood = -23.026692
Iteration 1: log likelihood = -22.455397
Iteration 2: log likelihood = -22.443629
Iteration 3: log likelihood = -22.443627
Mixed-effects logistic regression Number of obs = 14
Binomial variable: _metandi_n
Group variable: _metandi_i Number of groups = 7
Obs per group:
min = 2
avg = 2.0
max = 2
Integration points = 5 Wald chi2(2) = 55.41
Log likelihood = -22.443627 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
_metandi_t~e | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_metandi_d1 | .2043004 .1555728 1.31 0.189 -.1006167 .5092175
_metandi_d0 | 1.578185 .2154021 7.33 0.000 1.156005 2.000366
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
_metandi_i: Unstructured |
sd(_metan~1) | 4.47e-08 .1778994 0 .
sd(_metan~0) | 7.12e-08 .2327559 0 .
corr(_metan~1,_metan~0) | -.1365545 1869501 -1 1
------------------------------------------------------------------------------
LR test vs. logistic model: chi2(3) = 0.00 Prob > chi2 = 1.0000
Note: LR test is conservative and provided only for reference.
invsym(): matrix has missing values